Abstract
Automated machine learning (AutoML) has achieved remarkable success in automating the non-trivial process of designing machine learning models. Among the focal areas of AutoML, neural architecture search (NAS) stands out, aiming to systematically explore the complex architecture space to discover the optimal neural architecture configurations without intensive manual interventions. NAS has demonstrated its capability of dramatic performance improvement across a large number of real-world tasks. The core components in NAS methodologies normally include (i) defining the appropriate search space, (ii) designing the right search strategy and (iii) developing the effective evaluation mechanism. Although early NAS endeavors are characterized via groundbreaking architecture designs, the imposed exorbitant computational demands prompt a shift towards more efficient paradigms such as weight sharing and evaluation estimation, etc. Concurrently, the introduction of specialized benchmarks has paved the way for standardized comparisons of NAS techniques. Notably, the adaptability of NAS is evidenced by its capability of extending to diverse datasets, including graphs, tabular data and videos, etc., each of which requires a tailored configuration. This paper delves into the multifaceted aspects of NAS, elaborating on its recent advances, applications, tools, benchmarks and prospective research directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.