Abstract

The computationally efficient HZETRN code has been used in recent trade studies for lunar and Martian exploration and is currently being used in the engineering development of the next generation of space vehicles, habitats, and extra vehicular activity equipment. Code development has been based on a progression of approximations first assuming all particles are produced in the initiator direction of incidence (straight-ahead) later improved by treating neutrons produced in the backward hemisphere as moving straight-back (bi-directional). A new version (3DHZETRN) capable of transporting High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation in transverse directions is developed. Herein, new algorithms for light ion and neutron propagation with well defined convergence criteria in 3D objects is developed and tested against Monte Carlo simulations of 3D effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call