Abstract

Isocitrate lyase plays a key role for survival of Mycobacterium tuberculosis in the latent form during a chronic stage of infection. This enzyme is important for M. tuberculosis during steady stage growth when it converts isocitrate to succinate and glyoxylate. Then, the glyoxylate is condensed with acetyl-CoA to form malate by malate synthase. The carbon conserving glyoxylate pathway has not been observed in mammals; therefore, it has been determined as a potential drug target for discovery of a new antituberculosis agent. Novel active molecules should shorten the duration of therapy, prevent resistance development and eliminate latent disease. The review summarizes recent progresses in isocitrate lyase inhibitors, overviews structural analogues of several metabolic intermediates (3-nitropropionate, 3-bromopyruvate, itaconate, itaconic anhydride), peptide inhibitors, and recently developed inhibitors with various chemical structures. The largest inhibitory activity against isocitrate lyase (IC(50) of 0.10 ± 0.01 μM) and concomitantly a significant antimycobacterial activity has been presented by fluoroquinolone derivative 1-cyclopropyl-7-[3,5-dimethyl-4-(3-nitropropanoyl)piperazin-1-yl]-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, which has incorporated 3-nitropropionyl group as one of the structural analogue of succinate, a metabolic intermediate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.