Abstract
Here, molecular engineering of the organic-inorganic/inorganic halide perovskites indicates the role of cation, anion and halide components on the efficiency of the perovskite solar cells (PVSCs). The frontier molecular orbitals alignment of the ABX3 perovskites (A = Im; Imidazolium, Az; Azetidinium, Hy; Hydrazinium, Cs, Rb, Tl, B = Pb, Sn, Ge, X = Br, Cl, I) showed a balanced electron-hole transfer. The cation and halide ion are the main parts of the charge transfer from the dynamic viewpoint, while the exciton formation/dissociation rates, Rd/Ra, are mainly affected by BX3 anion. In addition to Cs+ and Rb+, Im+-based perovskites show an effective charge transfer distance and electron-hole (e-h) overlap, which makes them good excitation modes. I-based perovskites represent a higher response to the electric field, originated from their less electronic chemical harness. According to final efficiency, Cs+, Rb+, and Az+-based perovskites are introduced as the best photosensitizers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.