Abstract
Experimental findings on the hysteretic nature of the soil water retention curve, relating the degree of saturation to the matric suction, have generally to be superimposed with the aspects due to the deformability of the soil matrix. Indeed, most state-of-the-art models for retention curves only feature one of these two essential features, that is either capillary hysteresis or void ratio dependency. In an effort to set an advanced comprehensive model for the retention curves, it is proposed to review some recent results of the capillary hysteresis and focus on the elasto-plastic analogy in the degree of saturation versus suction relationship. The paper also contributes to quantifying the effects of mechanical straining on the retention curve on the basis of experimental data from the literature besides those obtained by the authors. The intrinsic shape of the soil water retention curve is first defined, followed by the empiric relationship between air entry value and void ratio. The retention sub-model of a complete constitutive model for unsaturated soils is described, the mathematical formulation being based on kinematic hardening and featuring direct coupling with the mechanical stress-strain module. Model capabilities are assessed on complex retention outlines, displaying the added value of the proposed framework for prediction issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.