Abstract

Abstract Groundwater in Chalk catchments is a major resource that also helps support internationally important habitats and ecosystems. Its dual porosity and dual permeability properties, coupled with large-scale structural features (such as hard rock layers and marls), produce a highly complex hydrogeological system. Recent impacts from groundwater flooding as well as vulnerability to drought have raised questions over the ability of traditional approaches to model these aquifers. Current work on near-surface hydrological processes has highlighted the importance of the soil and weathered zone for controlling recharge rates. In addition, karst-like features, sedimentary deposits and valley bottom processes govern stream–aquifer interaction and present a challenge in their representation in any modelling system. Methods that have, and are being, developed to incorporate these features, and their use in modelling Chalk catchments, are described. These are required in order to address major challenges, such as groundwater flooding and drought impacts, both of which could become more frequent and intense as a result of climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.