Abstract

Edge transport barrier (ETB) studies on the Alcator C-Mod tokamak [Phys. Plasmas 1, 1511 (1994)] investigate pedestal scalings and the radial transport of plasma and neutrals. Pedestal profiles show trends with plasma operational parameters such as total current IP. A ballooning-like IP2 dependence is seen in the pressure gradient, despite calculated stability to ideal ballooning modes. A similar scaling is seen in the near scrape-off layer for both low-confinement (L-mode) and H-mode discharges, possibly due to electromagnetic fluid drift turbulence setting transport near the separatrix. Neutral density diagnosis allows an examination of D0 fueling in H-modes, yielding profiles of effective particle diffusivity in the ETB, which vary as IP is changed. Edge neutral transport is studied using a one-dimensional kinetic treatment. In both experiment and modeling, the C-Mod density pedestal exhibits a weakly increasing pedestal density and a nearly invariant density pedestal width as the D0 source rate increases. Identical modeling performed on pedestal profiles typical of DIII-D [Nucl. Fusion 42, 614 (2002)] reveal differences in pedestal scalings qualitatively similar to experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.