Abstract

Biological organisms are multifaceted, intricate systems where slight perturbations can result in extensive changes in gene expression, protein abundance and/or activity, and metabolic flux. These changes occur at different timescales, spatially across cells of heterogeneous origins, and within single-cells. Hence, multimodal measurements at the smallest biological scales are necessary to capture dynamic changes in heterogeneous biological systems. Of the analytical techniques used to measure biomolecules, mass spectrometry (MS) has proven to be a powerful option due to its sensitivity, robustness, and flexibility with regardto thebreadth of biomolecules that can be analyzed. Recently, many studies have coupled MS to other analytical techniques with the goal of measuring multiple modalities from the same single-cell. It is with these concepts in mind that we focus this review on MS-enabled multiomic measurements at single-cell or near-single- cell resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call