Abstract

By reducing the temperature gradients in the vicinity of the crystal-melt interface, 35-mm-diameter InP boules with much reduced dislocation densities have been grown by the liquid-encapsulated Czochralski technique. A reduction in the residual donor concentration of InP grown by this technique has been achieved by using In-rich charges prepared by adding elemental In to polycrystalline InP ingot material. Nominally undoped crystals with carrier concentrations as low as 1–2 x4 1015 Cm − 1 and 77 K mobilities as high as 7.0 × 10 cm2 V−1 s−1 have been obtained. By growing doped crystals at increased seed or crucible rotation rates, short-range longitudinal variations in dopant concentration have been reduced to a few per cent, as determined by optical absorption measurements with a scanning CO2 laser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call