Abstract

Craniofacial reconstruction requires robust bone of specified geometry for the repair to be both functional and aesthetic. While native bone from elsewhere in the body can be harvested, shaped, and implanted within a defect, using either an in vitro or in vivo bioreactors eliminates donor site morbidity while increasing the customizability of the generated tissue. In vitro bioreactors utilize cells harvested from the patient, a scaffold, and a device to increase mass transfer of nutrients, oxygen, and waste, allowing for generation of larger viable tissues. In vivo bioreactors utilize the patient's own body as a source of cells and of nutrient transfer and involve the implantation of a scaffold with or without growth factors adjacent to vasculature, followed by the eventual transfer of vascularized, mineralized tissue to the defect site. Several different models of in vitro bioreactors exist, and several different implantation sites have been successfully utilized for in vivo tissue generation and defect repair in humans. In this review, we discuss the specifics of each bioreactor strategy, as well as the advantages and disadvantages of each and the future directions for the engineering of bony tissues for craniofacial defect repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.