Abstract

The original high-resolution transmission electron microscope (HRTEM) image simulation program was written as a tool to confirm interpretation of HRTEM images of niobium oxides. Thorough testing on known structures showed that image simulation could reliably duplicate the imaging process occurring in the HRTEM, and could thus be confidently used to interpret images of unknown structures. Mainstream application of image simulation to routine structure determination by HRTEM was ushered in by the establishment of the wide applicability of the SHRLI (simulated high-resolution lattice image) programs. Structure determination of the mineral takéuchiite by HRTEM and image simulation was the first such determination accepted by the KJCr without x-ray data. Of course, once the reliability of image simulation had been established, it was realized that the technique could be put to work for applications other than structure determination. Early on, simulations were used to explore various HRTEM imaging parameters, including specimen ionicity, validity of the projection approximation, and the resolutionlimiting effects of incident-beam convergence. Since the inception of HRTEM image simulation, its range of uses has continued to expand, and so has the number of programs available; distribution of the SHRLI code spawned improved versions as well as some new programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call