Abstract

Fragile X syndrome (FXS), the most common genetic form of autism spectrum disorder, is caused by deficiency of the fragile X mental retardation protein (FMRP). Despite extensive research using animal models, understanding how FMRP regulates human brain development and function remains a major challenge. Human pluripotent stem cells (hPSCs) offer powerful platforms for studying mechanisms of human diseases and for evaluating potential treatments. Genome editing, particularly the CRISPR/Cas9-based method, is highly effective for generating models to study genetic human diseases. Here we summarize how hPSCs and genome editing provide much-needed models for studying the genetic underpinnings, cellular mechanisms, and neuropathology that are unique to human FXS. The use of hPSCs and genome editing also provides an essential platform for therapeutic development in FXS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.