Abstract

Watershed delineation and flow direction representation are the foundations of streamflow routing in spatially distributed hydrologic modeling. A recent study showed that hexagon-based watershed discretization has several advantages compared to the traditional Cartesian (latitude–longitude) discretization, such as uniform connectivity and compatibility with other Earth system model components based on unstructured mesh systems (e.g., oceanic models). Despite these advantages, hexagon-based discretization has not been widely adopted by the current generation of hydrologic models. One major reason is that there is no existing model that can delineate hexagon-based watersheds while maintaining accurate representations of flow direction across various spatial resolutions. In this study, we explored approaches such as spatial resampling and hybrid breaching-filling stream burning techniques to improve watershed delineation and flow direction representation using a newly developed hexagonal mesh watershed delineation model (HexWatershed). We applied these improvements to the Columbia River basin and performed 16 simulations with different configurations. The results show that (1) spatial resampling modulates flow direction around headwaters and provides an opportunity to extract subgrid information; and (2) stream burning corrects the flow directions in mountainous areas with complex terrain features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.