Abstract

Heterocyclic skeletons are commonly found in various bioactive molecules and pharmaceutical compounds, making them crucial in areas such as medicinal chemistry, materials science, and the realm of natural product synthesis. In recent years, the rapid advancements of visible light methodologies in organic synthesis have shown promising potential for the development of light-induced carbene transfer reactions. This is particularly significant as most organic molecules do not absorb visible light. Free carbene, known for its high activity, is frequently utilized for insertion reactions or cyclopropanation reactions. This review focuses on the photochemical strategy for the construction of heterocyclic skeletons, specifically highlighting the methods that employ visible light-promoted carbene transfer reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.