Abstract

Successful bone marrow transplantation involves migration of hematopoietic stem cells through the blood, entering the extravascular hematopoietic cords, lodging in the proper niche, and expanding and differentiating to produce large numbers of mature cells -- all without depletion of the stem cell pool. An additional variable in these processes is the age of both the donor bone marrow and the recipient. Basic stem cell biology and transplant biology aim to uncover the molecular mechanisms controlling these processes. Mouse genetics is a frequently used tool that allows dissection of individual pathways that influence properties of hematopoietic stem cells. Recently, the conception of a niche has been expanded to include evidence for a vascular and an endosteal niche. Additionally, hematopoietic stem cell interactions within the niche have been further defined, documenting the importance of cell cycle, cell adhesion, response to cytokine stimulation and age-dependent functional changes. A new model for hematopoietic stem cell aging was proposed that supports the hypothesis that stem cell aging is at least partially due to an accumulation of DNA damage leading to exhaustion. This review focuses on the last year's progress using mouse genetics as a tool to study intrinsic mechanisms of hematopoietic stem cell biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.