Abstract

Resonant inelastic X-ray scattering (RIXS) has played a pivotal role in advancing our understanding of spin-orbit physics in 5d transition metal materials. The progress in RIXS techniques has closely paralleled improvements in energy resolution, which have enabled the study of very low-lying excitations and led to the discovery of numerous new phenomena with significant scientific and technological implications. The multi-bend achromat (MBA) lattice upgrade of third-generation synchrotron sources, such as the Advanced Photon Source (APS), heralds a transformative era by introducing enhancements in brilliance and emittance. These advancements provide an opportunity to push the boundaries of RIXS techniques, meeting the challenges at the research frontiers of material science. This article aims to highlight key instrumental and technical advancements that enable the achievement of meV resolution in RIXS and discuss the impact of such high-resolution RIXS on exploring spin-orbit physics in 5d transition metal materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.