Abstract

The use of algae-based green synthesis of metal oxide nanoparticles (MONPs) for bioremediation is an environmentally friendly and cost-effective alternative to conventional approaches. Algal-mediated synthesis offers several benefits over other biogenic processes, such as plants, bacteria, and fungi, including ease of synthesis, scalability, and rapid synthesis. Algae are readily available in nature, nontoxic, and can produce various types of metal oxide nanoparticles. This approach could significantly accelerate the development of novel algae-nanomaterials with improved properties and performance, leading to more efficient and cost-effective bioremediation of pollutants from water solutions, seawater, and industrial effluent. This review focuses on the biogenic fabrication of metal oxide nanoparticles based on aquatic plants (microalgae and seaweeds) due to their many advantages and attractive applications in pollutant remediation from aqueous solutions. Additionally, photocatalysis is highlighted as a promising tool for the remediation of industrial effluents due to its efficacy, ease of use, quick oxidation, cost-effectiveness, and reduced synthesis of harmful byproducts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.