Abstract

When gold is deposited as nanoparticles (NPs) with mean diameters of 2-5 nm or clusters with mean diameters below 2 nm onto a variety of supports such as metal oxides, carbons, polymers, etc., the supported Au NPs exhibit unique catalytic properties, while bulk Au is almost inert as a catalyst. A lot of research works indicate that the key factors of the catalysis by supported Au NPs are the selection of the supports, the control of the Au NP size, the shape of the Au NPs, and the strong junction between Au NPs and the supports, because the perimeter zone around Au NPs acts as the active site for many reactions. In order to elucidate the origin of catalysis by supported Au NPs, the interplay between physicochemical analysis, computational studies, and rational experiments for catalysis by supported Au NPs is becoming more and more important. This article summarizes our experiences and progress in such interplay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.