Abstract

Genomic selection (GS) is a marker-assisted selection method, in which high density markers covering the whole genome are used simultaneously for individual genetic evaluation via genomic estimated breeding values (GEBVs). GS can increase the accuracy of selection, shorten the generation interval by selecting individuals at the early stage of life, and accelerate genetic progress. With the availability of high density whole genome SNP (single nucleotide polymorphism) chips for livestock, GS is reshaping the conventional animal breeding systems. In many countries, GS is becoming the major genetic evaluation method for bull selection in dairy cattle and GS may soon completely replace the traditional genetic evaluation system. In recent years, GS has become an important research topic in animal, plant and aquiculture breeding and many exciting results have been reported. In this paper, the methods for obtaining GEBVs, factors affecting the accuracy of GEBVs, and the current status of implementation of GS in livestock are reviewed. Some unresolved issues related to GS in livestock are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.