Abstract
High producing dairy cows generally receive in the diet up to 5–6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Highlights
Important advances in the understanding of overall lipid digestion, absorption, and metabolism in dairy cows has been made between 1950 to 1990; afterwards, due to technological advances, a larger emphasis was placed on determining the molecular aspects of those processed
All three tissues are known to be involved in TAG synthesis in monogastrics; in bovine the liver is not considered an important site of TAG synthesis [138] except early post-partum in dairy cows, when non-esterified fatty acids (NEFA) significantly increase in circulation [139]
Utilization of fatty acids (FA) in the rumen Our review of the literature highlighted few advances made in the last decade or so on the utilization of FA by the rumen microbiota, with an emphasis on biohydrogenation of poly-unsaturated FA (PUFA)
Summary
Important advances in the understanding of overall lipid digestion, absorption, and metabolism in dairy cows has been made between 1950 to 1990; afterwards, due to technological advances, a larger emphasis was placed on determining the molecular aspects of those processed. Due to the low concentration of lipids in the diet of ruminants, the low activity of lipases, and the large amount of bile forming micelles, it is likely that the concentration of free FA in solution of the intestinal lumen is lower compared to monogastric animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.