Abstract

Forced convection air-cooled electronic systems utilize fans to sustain air flow through the enclosure. These fans are typically axial flow fans, radial impellers, and centrifugal blowers. When computing flow fields in electronic enclosures, axial fans have traditionally been abstracted as lumped fan models which may or may not be able to capture the necessary details. Under certain conditions, such lumped models may also capture some flow characteristics in the case of impellers and centrifugal blowers. These lumped models comprise a significantly simplified fan geometry, i.e. usually a planar (2-D) rectangular or circular surface with/without an inner (hub) concentric no-flow region for an axial fan or a rectangular prism/cylinder with a planar inlet for blowers/impellers, and a “pressure head-flow rate” (P-Q) curve, which may be supplied by the fan vendor or experimentally derived by the thermal designer. Irrespective of the source, the P-Q curve is obtained from laboratory experiments that conform to the test codes published by societies such as ASME and AMCA. Convenience and accuracy of lumped fan models are dependent on the specific application, cooling method and also the acceptable error margin. The acceptable error margin of the thermal design has shrunk significantly in the last decade. This has caused an interest in more accurate and robust fan modeling techniques such as Multiple Reference Frame (MRF) model which has already been commonly and successfully used in many different industries for a while. In this paper, an attempt was made to provide a validation of the MRF fan modeling applied to different types of fans. The computational fluid dynamics (CFD) model of an AMCA standard wind tunnel was used for each of the fans investigated. The P-Q curve obtained from the MRF model is benchmarked against the corresponding experimentally derived P-Q curve. Benefits and limitations of the MRF model are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.