Abstract
The nanotopography of biomedical implants is known to play a pivotal role in the cell–implant interactions for successful clinical implantations. Recently, due to the morphological similarity to natural extracellular matrix, titania (TiO2) nanofibers/nanowires have shown great promise as a preferred platform in the field of biomedical implants. In this study, we first review recent progress pertaining to fabrication techniques for producing TiO2 nanofibrous surface topographies. Subsequently, we outline the effect of this on cellular response, using several examples of current in vitro studies, noting that these remarkable results greatly support the potential use of such a surface as a substrate for implantation. However, further in vitro and in vivo studies will be required to realize their full potential in clinical use. Finally, we anticipate that the future direction in this field will be shaped by better analysis and understanding of cellular interactions with TiO2 nanowires/nanofibers surface structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.