Abstract
This special issue encapsulates the multifaceted landscape of contemporary challenges and innovations in Artificial Intelligence (AI) and Machine Learning (ML), with a particular focus on issues related to explainability, fairness, and trustworthiness. The exploration begins with the computational intricacies of understanding and explaining the behavior of binary neurons within neural networks. Simultaneously, ethical dimensions in AI are scrutinized, emphasizing the nuanced considerations required in defining autonomous ethical agents. The pursuit of fairness is exemplified through frameworks and methodologies in machine learning, addressing biases and promoting trust, particularly in predictive policing systems. Human-agent interaction dynamics are elucidated, revealing the nuanced relationship between task allocation, performance, and user satisfaction. The imperative of interpretability in complex predictive models is highlighted, emphasizing a query-driven methodology. Lastly, in the context of trauma triage, the study underscores the delicate trade-off between model accuracy and practitioner-friendly interpretability, introducing innovative strategies to address biases and trust-related metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Artificial Intelligence Tools
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.