Abstract

The theory of chemotaxis has been widely accepted, but its mechanisms are disputed. Chemotactic growth of peripheral nerves may be tissue, topographic and end-organ specific. Recent studies indicated that peripheral nerve regeneration lacks topographic specificity, but whether it has end-organ specificity is disputed. Chemotaxis in nerve regeneration is affected by the distance between stumps, volume, and neurotrophic support, as well as the structure of distal nerve stumps. It can be applied to achieve precise repair of nerves and complete recovery of end organ function. Small gap sleeve bridging technique, which is based on this theory shows promising effects but it is still challenging to find the perfect combination of nerve conduits, cells and neurotrophic factors to put it intoits best use. In this paper, we made a comprehensive review of mechanisms, effect factors and applications of chemotaxis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.