Abstract

Nuclear Magnetic Resonance has revolutionized modern science by its precision, selectivity and non-envasiveness. From complicated biomolecules to materials, from living organisms to nanometric particles, Magnetic Resonance Imaging and Spectroscopy have provided a wealth of invaluable information. Those studies take place in the laboratory, since they require strong and extremely homogeneous superconducting magnets and this represents a major limitation for the technique. Furthermore, the size of the object or subject to study is limited since it has to fit inside the bore of the magnet. Efforts to alleviate those problems lead to the recent development of portable magnetic resonance systems. Their use remained, however, mainly qualitative, since spectroscopic information could not be recovered. We have introduced recently an approach to regain this lost spectral information even in the presence of inhomogeneous magnetic fields. Our approach is based on the matching between the effect of the radio-frequency field and the effect of the static magnetic field. Several practical implementations will be reviewed and put in perspective for their applicability and efficiency in ex-situ NMR. To cite this article: D. Sakellariou et al., C. R. Physique 5 (2004).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.