Abstract

Nitinol (NiTi), a shape memory alloy (SMA) of nickel and titanium, exhibits two unique properties: the shape memory effect and superelasticity. It is a material of choice for applications demanding extraordinary flexibility and motion. It is subjected to greater fatigue strains compared to ordinary metals. The structural and functional fatigue properties are important for assessing the fatigue life and reliability of the superelastic NiTi. The advances made in the experimental analysis to improve the structural and functional fatigue resistance of superelastic NiTi are reviewed in this paper. Various aspects of fatigue behaviour of NiTi in biomedical and cooling applications, along with fatigue failure mechanism, are elaborated under structural fatigue. Importance of functional fatigue and its connect with structural fatigue performance of NiTi is discussed citing recent research literature. Furthermore, the effect of processing parameters involved in additive manufacturing on the fatigue performance of NiTi is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call