Abstract
The purpose of this brief review is to highlight some of the more important advances in endocrinology of aging research over the past year. Four advances were chosen and briefly described. First, exploration of the early steps in the generation of the internal steroidal hormonal signal involved in lifespan extension via the insulin/IGF-like signaling pathway in the nematode by two research groups revealed that the product of cholestanoic acid derivatives metabolized by a cytochrome P-450-like protein activates a protein with homology to the mammalian nuclear receptor superfamily, a process strikingly similar to the steroid hormone signaling pathway documented in mammalian systems. Second is the discovery that sirtuins, proteins that regulate lifespan in model organisms, enhance pancreatic insulin secretion in mice following a glucose challenge, suggesting the potential to regulate mammalian lifespan through regulation of the insulin signaling pathway. Third, the newly discovered hormone klotho, which also plays a role in regulating lifespan, in this case in mice, is reported to not only negatively affect insulin sensitivity but, perhaps more importantly, significantly affects calcium and phosphate metabolism as a required cofactor of Fgf-23 signaling. Finally the gonadotropin FSH is shown to directly affect bone density in mice separate from any direct effect of estrogen, suggesting that reproductive hormones other than estrogen can directly impact menopause-associated pathophysiology in non-reproductive tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.