Abstract

A new mouse model for Down syndrome.- Predicting pathway perturbations in Down syndrome.- Aberrant protein expression of transcription factors BACH1 and ERG, both encoded on chromosome 21, in brains of patients with Down syndrome and Alzheimer's disease.- Cell cycle and cell size regulation in Down Syndrome cells.- Transcription factor REST dependent proteins are comparable between Down Syndrome and control brains: challenging a hypothesis.- An altered antioxidant balance occurs in Down syndrome fetal organs: Implications for the gene dosage effect hypothesis.- Overexpression of Cl-tetrahydrofolate synthase in fetal Down Syndrome brain.- Increased expression of human reduced folate carrier in fetal Down syndrome brain.- Chromosome 21 KIR channels in brain development.- Reduction of chromatin assembly factor 1 p60 and C21orf2 protein, encoded on chromosome 21, in Down Syndrome brain.- The MNB/DYRK1A protein kinase: Neurobiological functions and Down syndrome implications.- The MNB/DYRK1A protein kinase: Genetic and biochemical properties.- Cytoskeleton derangement in brain of patients with Down Syndrome, Alzheimer's disease and Pick's disease.- The cerebral cortex in Fetal Down Syndrome.- Polysomnography in transgenic hSOD1 mice as Down syndrome model.- Spectrum of cognitive, behavioural and emotional problems in children and young adults with Down syndrome.- Overexpression of transcription factor BACH1 in fetal Down Syndrome brain.- Down syndrome and associated congenital malformations.- RNA Microarray analysis of channels and transporters in normal and fetal Down Syndrome (trisomy 21) brain.- Heart type fatty acid binding protein (H-FABP) is decreased in brains of patients with Down syndrome and Alzheimer's disease.- Stem cell marker expression in human trisomy 21 amniotic fluid cells and trophoblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call