Abstract

Distributed learning via network diffusion is a popular trend in signal processing, which addresses the need of obtaining scalable analytics from networked sensor systems. This paper describes relevant advances in distributed power system state estimation (PSSE) via diffusion. Considering a hybrid sensor measurements system, we show that the Gauss-Newton approach, typically favored in PSSE, can be used as a primitive to derive a gossip-based algorithm that outperforms first order diffusion methods proposed in the literature. We also study analytically and numerically the dependency between measurement placement, grid topology and physical parameters, communication network and the performance of the decentralized PSSE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.