Abstract
Organochalcogenides are an important class of compounds encountered in organic synthesis, chemical biology and materials chemistry. The development of the Ar2-S/Se/Te bond formation, mostly in the synthesis of diarylchalcogenides, has garnered considerable attention in recent years. Transition metal catalysis is one of the most used methods for the synthesis of diarylchalcogenides via the traditional cross-coupling strategy. Recently, the Chan-Lam coupling has been valued to be the best alternative for the traditional cross-coupling due to the mild and effective reaction conditions. The review summarizes the strategies adopted for the synthesis of diarylchalogenides (Ar2X, X = S, Se, Te) by Chan-Lam-type coupling using Cu or Ni catalysis and comprises diverse approaches based on different sources of arylsulfur donors like thiols, diaryldisulfides, molecular sulfur, diheteroaryldisulfides and similar sources of Se and Te.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.