Abstract

In drug discovery, polypharmacology encompasses the use of small molecules with defined multi-target activity and in vivo effects resulting from multi-target engagement. Multi-target compounds are often efficacious in the treatment of complex diseases involving target and pathway networks, but might also elicit unwanted side effects. Computational approaches such as target prediction or multi-target ligand design have been used to support polypharmacological drug discovery. In addition to efforts directed at the identification or design of new multi-target compounds, other computational investigations have aimed to differentiate such compounds from potential false-positives or explore the molecular basis of multi-target activities. Herein, a concise overview of the field is provided and recent advances in computational polypharmacology through machine learning are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.