Abstract

Electrocatalytic urea synthesis from CO2 and nitrogenous substances represents an essential advance for the chemical industry, enabling the efficient utilization of resources and promoting sustainable development. However, the development of electrocatalytic urea synthesis has been severely limited by weak chemisorption, poor activation and difficulties in C-N coupling reactions. In this review, catalysts and corresponding reaction mechanisms in the emerging fields of bimetallic catalysts, MXenes, frustrated Lewis acid-base pairs and heterostructures are summarized in terms of the two central mechanisms of molecule-catalyst interactions as well as chemical bond cleavage and directional coupling, which provide new perspectives for improving the efficiency of electrocatalytic synthesis of urea. This review provides valuable insights to elucidate potential electrocatalytic mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call