Abstract

In 2015, progress in understanding asthma ranged from insights to asthma inception, exacerbations, and severity to advancements that will improve disease management throughout the lifespan. 2015's insights to asthma inception included how the intestinal microbiome affects asthma expression with the identification of specific gastrointestinal bacterial taxa in early infancy associated with less asthma risk, possibly by promoting regulatory immune development at a critical early age. The relevance of epigenetic mechanisms in regulating asthma-related gene expression was strengthened. Predicting and preventing exacerbations throughout life might help to reduce progressive lung function decrease and disease severity in adulthood. Although allergy has long been linked to asthma exacerbations, a mechanism through which IgE impairs rhinovirus immunity and underlies asthma exacerbations was demonstrated and improved by anti-IgE therapy (omalizumab). Other key molecular pathways underlying asthma exacerbations, such as cadherin-related family member 3 (CDHR3) and orosomucoid like 3 (ORMDL3), were elucidated. New anti-IL-5 therapeutics, mepolizumab and reslizumab, were US Food and Drug Administration approved for the treatment of patients with severe eosinophilic asthma. In a clinical trial the novel therapeutic inhaled GATA3 mRNA-specific DNAzyme attenuated early- and late-phase allergic responses to inhaled allergen. These current findings are significant steps toward addressing unmet needs in asthma prevention, severity modification, disparities, and lifespan outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call