Abstract

Abstract. Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. A two-source energy balance (TSEB) model designed for row crops solves the energy balance of the soil-plant canopy-atmosphere continuum using surface brightness temperature. By solving the energy balance of the soil and canopy separately, the TSEB model can calculate E and T, which cannot be done with single-source models. However, few studies have tested the TSEB model where E or T measurements were available, which until recently has impeded its advance. This paper reviews recent physically-based advances of the TSEB model. The advances were tested using measurements of E, T, and ET by microlysimeters, sap flow gauges, and weighing lysimeters, respectively, at Bushland, Texas, USA for irrigated cotton having a wide range of canopy cover. Root mean square error (RMSE) and mean bias error (MBE) were 0.54 mm d-1 and -0.19 mm d-1, respectively, between measured and calculated E. RMSE and MBE were 0.87 mm d-1 and 0.31 mm d-1, respectively, between measured and calculated T. This was deemed an improvement over previous TSEB model versions, which overestimated E and underestimate T, resulting in RMSE and MBE up to 3.8 mm d-1 and -3.5 mm d-1, respectively. Ongoing research includes testing the TSEB model using different remote sensing platforms, from ground-based to satellite scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.