Abstract

This study involved the creation and assessment of a microwave sensor to measure glucose levels in aqueous solutions without invasiveness. The sensor design utilized a planar interdigital capacitor (IDC) loaded with a hexagonal complementary split-ring resonator (HCSRR). The HCSRR was chosen for its ability to generate a highly intense electric field that is capable of detecting variations in the dielectric characteristics of the specimen. A chamber tube was used to fill glucose solutions at the sensor’s sensitive area, and changes in the device’s resonance frequency (Fr) and reflection coefficient (S11) were used to measure glucose levels. Fitting formulas were developed to analyze the data, and laboratory tests showed that the sensor could accurately measure glucose levels within a range of 0–150 mg/dL. At a concentration of 37.5 mg/dL, the sensitivity based on S11 and Fr reached maximum values of 10.023 dB per mg/dL and 1.73 MHz per mg/dL, respectively. This implies that the sensor put forward has the possibility of being utilized in medical settings for the monitoring of glucose levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call