Abstract

This review emphasizes the progress in identifying and eliminating para-nitrophenol (4-NP), a toxic organic compound. It covers various strategical methods and materials, including organic and inorganic nanomaterials, for detecting and reducing 4-NP. Detection techniques such as electrochemical methods. Optical fiber-based surface plasmon resonance and photoluminescence, as well as the mechanisms of Förster Resonance Energy Transfer (FRET) and Inner Filter Effect (IFE) in fluorescence detection, are presented. Removal techniques for this contaminant include homogeneous catalysis, electrocatalysis, photocatalysis, and thermocatalysis, and their reaction mechanisms are also discussed. Further, the theoretical perspectives of 4-NP detection and reduction, parameters influencing the activities, and future perspectives are also reviewed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.