Abstract

Potassium-ion batteries (PIBs) have aroused considerable interest as a promising next-generation advanced large-scale energy storage system due to the abundant potassium resources and high safety. However, the K+ with large ionic radius brings restricted diffusion kinetics and severe volume expansion in electrode materials, resulting in inferior actual rate characteristics and rapid capacity fading. Designing electrode materials with one-dimensional (1D) nanostructure can effectively enhance various electrochemical properties due to the well-guided electron transfer pathways, short ionic diffusion channels and high specific surface areas. In this review, we summarize the recent research progress and achievements of 1D nanostructure electrode materials in PIBs, especially focusing on the development and application of cathode and anode materials. The nanostructure, synthetic methods, electrochemical performances and structure-performance correlation are discussed in detail. The advanced characterizations on the reaction mechanisms of 1D nanostructure electrode materials in PIBs are briefly summarized. Furthermore, the main future research directions of 1D nanostructure electrode materials are also predicted, hoping to accelerate their development into the practical PIBs market.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.