Abstract

Probabilistic flood hazard assessments have advanced substantially, with modern methods for dealing with the risk from tropical cyclones utilizing either a variation of the joint probability method with optimal sampling (JPM-OS)2,3 or the statistical deterministic track method (SDTM)1,4. In the JPM-OS, tropical cyclones are reduced to a set of 5 to 9 parameters, whose characteristics are analyzed statistically to develop a joint probability distribution for tropical cyclones of given characteristics. In the SDTM, cyclogenesis of a large number of storms is seeded via a statistical model from historical data, then storms are propagated using one of several different methods, incorporating varying degrees of the physics of cyclone transformation as the storms propagate. Due to the significant cost of storm surge simulations, some form of optimization or selection is then performed to reduce the number of synthetic storms that must be simulated to determine the flood elevation corresponding to a given recurrence interval (e.g. the so-called 100-year flood). In both methods, substantial uncertainties exist, which have a tendency to increase the estimated flooding risk. Efforts to account for these uncertainties have varied, and there remains significant work to be done. Here, we demonstrate how these uncertainties tend to increase the flood risk and show that additional sources of uncertainty remain to be accounted for.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.