Abstract

With a worldwide trend towards the efficient use of renewable energies and the rapid expansion of the electric vehicle market, the importance of rechargeable battery technologies, particularly lithium-ion batteries, has steadily increased. In the past few years, a major breakthrough in electrolyte materials was achieved by simply increasing the salt concentration in suitable salt–solvent combinations, offering technical superiority in numerous figures of merit over alternative materials. This long-awaited, extremely simple yet effective strategy can overcome most of the remaining hurdles limiting the present lithium-ion batteries without sacrificing manufacturing efficiency, and hence its impact is now widely felt in the scientific community, with serious potential for industrial development. This Review aims to provide timely and objective information that will be valuable for designing better realistic batteries, including a multi-angle analysis of their advantages and disadvantages together with future perspectives. Emphasis is placed on the pathways to address the remaining technical and scientific issues rather than re-highlighting the many technical advantages. New electrolyte materials can offer breakthroughs in the development of next-generation batteries. Here Atsuo Yamada and colleagues review the progress made and the road ahead for salt-concentrated electrolytes, an emerging and promising electrolyte candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.