Abstract

Wax deposition is a severe flow assurance challenge that threatens waxy crude oil production and transportation. For wax remediation, pipeline pigging is the most widely used technique. However, the elusiveness of wax removal mechanism and the lack of reliable methods to evaluate wax breaking force and wax removal efficiency easily trigger pig stalling and wax blockage in field pigging operations. Modeling wax breaking force and wax removal efficiency, therefore, promotes the pigging confidence. This Review seeks to clarify the current picture of wax removal research in crude oil pipeline pigging. Relevant wax deposit properties including wax layer thickness and strength are discussed. Wax removal mechanisms are summarized from perspectives of wax–pig interaction, macroscopic force response, and scenarios with oil flow. Prediction models of wax breaking force and wax removal efficiency are analyzed comprehensively. Pig geometry optimization using this model is given. In addition, the key roles of wax deposit strength, viscoelasticity and thixotropy, foam pig investigation, and wax plug prediction are highlighted for guiding future endeavors in this area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call