Abstract

Energy systems face a growing vulnerability to the availability and quality of water sources as a consequence of rising energy demand and increasing climate variability. The vulnerability of energy systems to water utilization constraints could be mitigated by the effective design and implementation of water management strategies in energy conversion process and supply chain systems. Based on a broad literature review, this study provides a comprehensive examination of the recent advances in methodologies to support decision-making processes involving water management in the energy sector. Water management issues which require more attention by the research community, include: (i) development of decision-support models for biofuel supply chains that deal with water scarcity scenarios, (ii) integration of wastewater quality variability into the design and planning of water management strategies for the development of unconventional fossil fuels, (iii) improvements in the efficiency of cooling systems, and (iv) integration of decision-support tools with climate and weather models for the optimal design, planning, and operation of integrated water and energy supply chains, especially power systems. The systematic targeting of the aforementioned issues in the near future is critical and requires the joint efforts of the energy modeling as well as the weather and climate research communities, which to date have principally addressed water management issues from their own individual perspectives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.