Abstract
RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. While much is known about RAS function in the last 40 years, there is a substantial knowledge gap concerning the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supporting by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.