Abstract

The effectiveness of local forcing by periodic blowing/suction through a thin transverse slot to alter the properties of an incompressible turbulent boundary layer is considered. In the first part of the review the effectiveness of the forcing through a single slot is discussed. Analysis of approaches for experimental modeling of the forcing, including those on flat plate, is given. Some ambiguities in simulating such flows are reviewed. The main factors affecting the structure of the forced flow are analyzed. In the second part the effectiveness of the forcing on a body of revolution by periodic blowing/suction through a series of transverse annular slots is discussed. The focus is the structure, properties, and main regularities of the forced flows in a wide range of variable conditions and basic parameters such as the Reynolds number, the dimensionless amplitude of the forced signal, and the frequency of the forced signal. The effect of the forcing on skin-friction in the turbulent boundary layer is clearly revealed. A phase synchronism of blowing/suction using an independent control of the forcing through the slots provides an additional skin friction reduction at distances up to 5–6 boundary layer displacement thicknesses upstream of an annular slot. The local skin friction reduction under the effect of periodic blowing/suction is stipulated by a dominating influence of an unsteady coherent vortex formed in the boundary layer, the vortex propagating downstream promoting a shift of low-velocity fluid further from the wall, a formation of a retarded region at the wall, and hence, a thickening of the viscous sublayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.