Abstract

Plant protection activities are most important practices during crop production. Application of maximum pesticide products with the sprayer. The application of fungicides, herbicides, and insecticides is one of the most recurrent and significant tasks in agriculture. Conventional agricultural spraying techniques have made the inconsistency between economic growth and environmental protection in agricultural production. Spraying techniques continuously developed in recent decades. For pesticide application, it is not the only sprayer that is essential, but all the parameters like the type and area of the plant canopy, area of a plant leaf, height of the crop, and volume of plants related to plant protection product applications are very important for obtaining better results. From this point of view, the advancement in agriculture sprayer has been started in last few decades. Robotics and automatic spraying technologies like variable rate sprayers, UAV sprayers, and electrostatic sprayers are growing to Increase the utilization rate of pesticides, reduce pesticide residues, real-time, cost-saving, high compatibility of plant protection products application. These technologies are under the “umbrella” of precision agriculture. The mechanized spraying system, usually implemented by highly precise equipment or mobile robots, which, makes possible the selective targeting of pesticide application on desire time and place. These advanced spraying technologies not only reduces the labour cost but also effective in environmental protection. Researchers are conducting experimental studies on the design, development and testing of precision spraying technologies for crops and orchards.

Highlights

  • Pesticide applications are considered significant during the plant protection practices in current agriculture

  • Pesticide application utilizes the to a significant percentage of the production cost [3]

  • Effective pesticide application is a critical activity during crop production season that requires efficient spraying machinery with proper calibration as well as relevant regulations to reduce

Read more

Summary

Introduction

Pesticide applications are considered significant during the plant protection practices in current agriculture. With the use of advanced sprayers, the effect of pesticide exposure on the environment, water, and soil contamination reduces with the reduction of spray drift and overdose of pesticide application by the control pesticide applied spray nozzles and quick detection of structure and geometry of crops and plants canopy. In conventional sprayers these flow control nozzles, sensor technology would not be used because of this these sprayers are not working efficiently in the field and produce more amount of drift and increase pesticide amount and less effective for pests, and insects. The objective of this chapter to highlight the advanced spraying technologies use for the agriculture pesticide application to improve the spray deposition penetration in the plant canopy, reduces the spray drift, and provide a comprehensive understanding of the spraying process from machine to target for improving fruits, vegetables, and cereals crop production

Crop sprayers
Orchard sprayers
Ultra-low volume sprayers
Aerial spraying
Spray drift management
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call