Abstract

Steel surface defect detection is of utmost importance for ensuring product quality, cost reduction, enhanced safety, and heightened customer satisfaction. To address the limitations of traditional steel surface defect detection algorithms, which often yielded singular detection results and suffered from high miss detection rates, we proposed an enhanced Yolov5 steel surface defect detection algorithm. In this approach, this paper employed the EfficientNet network as a replacement for the Yolov5 backbone network. Subsequently, we trained and tested this modified network on a steel surface defect dataset to mitigate the challenges associated with high miss detection rates and underperforming evaluation metrics. Our experimental findings underscored the superiority of the improved algorithm, particularly when compared to Yolov5. This enhanced algorithm exhibited substantial improvements across several key performance metrics, including Precision, Recall, mAP@0.5, parameter count, and pt file size. Noteworthy achievements included a 6.39% increase in Precision for Yolov5-EfficientNetB4, a remarkable 7.75% improvement in Recall for Yolov5-EfficientNetB0, and a 5.57% boost in mAP@0.5 for Yolov5-EfficientNetB6. Additionally, the pt file size for Yolov5-EfficientNetB0 saw a substantial 39.65% reduction, although it was important to note that the inference time for the improved algorithm increased. Among the models, Yolov5-EfficientNetB6 struck the best balance in terms of performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.