Abstract

Presented here is a review of recent progress in the nascent field of glass-clad semiconductor core optical fibers. Such fibers, generally focused to-date on silicon and germanium cores, define a new class of optical fibers that have the potential to significantly advance the fields of nonlinear fiber optics and infrared power delivery. They also can provide considerable insight into the fundamentals of crystal growth and the interplay between thermodynamics and kinetics under non-equilibrium conditions. More specifically, this review begins with a brief history of the international efforts to-date and is followed by a more in-depth discussion of the processing and properties of crystalline unary (silicon and germanium) and binary (indium antimonide) semiconductor optical fibers prepared by a molten core approach that enables long lengths at relatively high speeds by comparison to other fabrication methods. Further, the fundamental performance limits are postulated as are a range of present and future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.