Abstract

Surface Enhanced Raman Spectroscopy (SERS) technique is an effective analytical technique in which fingerprint information about analytes can be obtained, can provide detection limit performance at the single molecule level, and analyzes are performed in a single step without any intermediate steps. SERS technique offers additional benefits rather than other analytical techniques including high selectivity, ultrasensitive detection, uncomplicated protocols, in situ sampling, on-set capability and cost-effectiveness. As a result of the combination of developments in materials and nanotechnology science with the SERS analysis technique, this technique strengthens its use advantage day by day. The most important factor that limited the use of this technique was the fact that the solution containing the desired analyte(s) was dropped onto the SERS substrate and the same substrate could not be reused in subsequent analyses. To solve this problem, scientists have focused on developing reusable SERS substrates in recent years. In these studies, scientists basically used three SERS substrate cleaning applications (1) washing the SERS substrate with a suitable solvent that can elute the analyte from SERS surface after analysis, (2) cleaning the SERS substrate with catalytic degradation of analytes after analysis by modifying them with catalytic active materials and (3) Applying plasma cleaning procedure to SERS substrate after analysis and (4) applying adsorption and desorption procedure prior to SERS analysis. Herein, the aim of this review article is to evaluate the reusable SERS substrates-based methods based on their level of development and their potential to recycle. This review offers a coherent discussion on a wide range of sensing schemes employed in fabricating the SERS substrates. We utilized a critical approach in which elaborative examples were selected to highlight key shortcomings of various experimental configurations. In the same vein, there is a discussion of the advantages and limitations concerning the key instrumental advances and the expansion of the recent methods developed in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.