Abstract

Nanobodies, derived from camelids and sharks, offer compact, single-variable heavy-chain antibodies with diverse biomedical potential. This review explores their generation methods, including display techniques on phages, yeast, or bacteria, and computational methodologies. Integrating experimental and computational approaches enhances understanding of nanobody structure and function. Future trends involve leveraging next-generation sequencing, machine learning, and artificial intelligence for efficient candidate selection and predictive modeling. The convergence of traditional and computational methods promises revolutionary advancements in precision biomedical applications such as targeted drug delivery and diagnostics. Embracing these technologies accelerates nanobody development, driving transformative breakthroughs in biomedicine and paving the way for precision medicine and biomedical innovation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.