Abstract
Hematopoietic stem cell (HSC) transduction has undergone remarkable advancements in recent years, revolutionizing the landscape of gene therapy specifically for inherited hematologic disorders. The evolution of viral vector-based transduction technologies, including retroviral and lentiviral vectors, has significantly enhanced the efficiency and specificity of gene delivery to HSCs. Additionally, the emergence of small molecules acting as transduction enhancers has addressed critical barriers in HSC transduction, unlocking new possibilities for therapeutic intervention. Furthermore, the advent of gene editing technologies, notably CRISPR-Cas9, has empowered precise genome modification in HSCs, paving the way for targeted gene correction. These striking progresses have led to the clinical approval of medicinal products based on engineered HSCs with impressive therapeutic benefits for patients. This review provides a comprehensive overview of the collective progress in HSC transduction via viral vectors for gene therapy with a specific focus on transduction enhancers, highlighting the latest key developments, challenges, and future directions towards personalized and curative treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.