Abstract

Conductive threads have emerged as a highly promising platform for the advancement of smart textiles, enabling the integration of conductivity into fabric materials. In this study, we present a novel approach to fabricate highly flexible graphene-based smart threads, which exhibit exceptional electrical properties. Four distinct types of smart threads were meticulously prepared by drop-casting graphene dispersions onto cotton threads, utilizing various solvents. The influence of annealing temperature and the quantity of dispersed graphene on the electrical conductivity of the threads was systematically investigated. Our findings reveal that the electrical conductivity of the threads is significantly influenced by the type of solvent and the annealing temperature, while exhibiting an increasing trend with higher amounts of dispersed graphene. Remarkably, we achieved a maximum electrical conductivity of 2505.68 S cm−1 for a thread prepared with 6 mL of graphene dispersed in ethanol, annealed at a temperature of 78 °C. Furthermore, the fabricated smart threads were successfully employed as replacements for electric cables in a mobile charger and a computer mouse, demonstrating their high efficiency. This work represents a significant advancement in the development of a new generation of smart textiles, offering a simple, cost-effective, and environmentally friendly fabrication method for the production of smart threads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call